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Abstract

Product Distribution (PD) theory is a new framework
for analyzing and controlling distributed systems. Here
we demonstrate its use for distributed stochastic opti-
mization. First we review one motivation of PD theory,
as the information-theoretic extension of conventional
full-rationality game theory to the case of bounded ra-
tional agents. In this extension the equilibrium of the
game is the optimizer of a Lagrangian of the (prob-
ability distribution of) the joint state of the agents.
When the game in question is a team game with con-
straints, that equilibrium optimizes the expected value
of the team game utility, subject to those constraints.
The updating of the Lagrange parameters in the La-
grangian can be viewed as a form of automated anneal-
ing, that focuses the MAS more and more on the opti-
mal pure strategy. This provides a simple way to map
the solution of any constrained optimization problem
onto the equilibrium of a Multi-Agent System (MAS).
We present computer experiments involving both the
Queen’s problem and K-SAT validating the predictions
of PD theory and its use for off-the-shelf distributed
adaptive optimization.

Introduction

Product Distribution (PD) theory was introduced re-
cently in (Wolpert 2003; 2004b; 2004a). It is a broad
framework for analyzing, controlling, and optimizing
distributed systems. Among its potential applications
are (constrained) optimization, distributed adaptive
control of multi-agent systems, sampling of probabil-
ity densities, density estimation, numerical integration,
reinforcement learning, information-theoretic bounded
rational game theory, population biology, and man-
agement theory. See (Antoine et al. 2004; Airiau
& Wolpert 2004; Lee & Wolpert 2004; Bieniawski &
Wolpert 2004).

Here we demonstrate its use for distributed stochas-
tic optimization. Typically in stochastic approaches to
optimization one uses probability distributions to help
search for point x ∈ X optimizing a function G(x). In
contrast, in the PD approach one searches for a prob-
ability distribution P (x) that optimizes an associated
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Lagrangian, LG(P ). Since P is a vector in a Euclidean
space, the search can be done via techniques like gra-
dient descent or Newton’s method — even if X is a
categorical, finite space.

One motivation of PD theory is as the information-
theoretic extension of conventional full-rationality game
theory to the case of bounded rational agents. Informa-
tion theory shows that the equilibrium of a game played
by bounded rational players is the optimizer of a La-
grangian of the probability distribution of the agents’
joint-moves. From this perspective distributed adap-
tive optimization algorithms in which each agent uses
reinforcement learning are just one — inefficient — way
to optimize L (Wolpert 2003; 2004b).

In any game, bounded rational or otherwise, the
agents are independent, with each agent i choosing its
move xi at any instant by sampling its probability dis-
tribution (mixed strategy) at that instant, qi(xi). Ac-
cordingly, the distribution of the joint-moves is a prod-
uct distribution, P (x) =

∏

i qi(xi). In this representa-
tion of a Multi-Agent System (MAS), all coupling be-
tween the agents occurs indirectly; it is the separate
distributions of the agents {qi} that are statistically
coupled, while the actual moves of the agents are inde-
pendent. This is reflected in the fact that the optimiza-
tion of the Lagrangian (e.g., via gradient descent) can
be done in a completely distributed manner.

When the game in question is a team game with con-
straints, the bounded rational equilibrium optimizes the
expected value of the team game utility, subject to those
constraints and an overall entropy value. Updating of
the Lagrange parameters in the usual way provides a
form of automated annealing, focusing the MAS more
and more on the optimal pure strategy as the parame-
ters change. This provides a broadly applicable way to
cast any constrained optimization problem as the equi-
librating process of a MAS, together with an efficient
method for that equilibrating process.

In the next section we review the game-theory mo-
tivation of PD theory. We then present details of
our Lagrangian-minimization algorithm. We end with
computer experiments involving both the N Queen’s
problem and K-sat (Yokoo & Hirayama 2000; Mezard,
Parisi, & Zecchina 2002). These results, though pre-



liminary, validate the predictions of PD theory, and in-
dicate its usefulness as a general purpose technique for
distributed solution of constrained optimization prob-
lems.

Bounded Rational Game Theory

Review of noncooperative game theory

In noncooperative game theory one has a set of N
players. Each player i has its own set of allowed
pure strategies. A mixed strategy is a distribu-
tion qi(xi) over player i’s possible pure strategies. Each
player i also has a private utility function gi that
maps the pure strategies adopted by all N of the play-
ers into the real numbers. So given mixed strategies
of all the players, the expected utility of player i is
E(gi) =

∫

dx
∏

j qj(xj)gi(x)
1.

In a Nash equilibrium every player adopts the
mixed strategy that maximizes its expected utility,
given the mixed strategies of the other players. More
formally, ∀i, qi = argmaxq′i

∫

dx q′i
∏

j 6=i qj(xj) gi(x).

Perhaps the major objection that has been raised to
the Nash equilibrium concept is its assumption of full
rationality (Fudenberg & Levine 1998; Fudenberg &
Tirole 1991). This is the assumption that every player i
can both calculate what the strategies qj 6=i will be and
then calculate its associated optimal distribution. In
other words, it is the assumption that every player will
calculate the entire joint distribution q(x) =

∏

j qj(xj).
If for no other reasons than computational limitations
of real humans, this assumption is essentially untenable.

Review of the maximum entropy principle

Shannon was the first person to realize that based on
any of several separate sets of very simple desider-
ata, there is a unique real-valued quantification of the
amount of syntactic information in a distribution P (y).
He showed that this amount of information is (the
negative of) the Shannon entropy of that distribution,

S(P ) = −
∫

dy P (y) ln[P (y)
µ(y) ]. So for example, the distri-

bution with minimal information is the one that doesn’t
distinguish at all between the various y, i.e., the uniform
distribution. Conversely, the most informative distribu-
tion is the one that specifies a single possible y. Note
that for a product distribution, entropy is additive, i.e.,
S(
∏

i qi(yi)) =
∑

i S(qi).
Say we are given some incomplete prior knowledge

about a distribution P (y). How should one estimate
P (y) based on that prior knowledge? Shannon’s result
tells us how to do that in the most conservative way:
have your estimate of P (y) contain the minimal amount
of extra information beyond that already contained in
the prior knowledge about P (y). Intuitively, this can be
viewed as a version of Occam’s razor. This approach is
called the maximum entropy (maxent) principle. It has

1Throughout this paper, the integral sign is implicitly in-
terpreted as appropriate, e.g., as Lebesgue integrals, point-
sums, etc.

proven useful in domains ranging from signal processing
to supervised learning (Mackay 2003).

Maxent Lagrangians

Much of the work on equilibrium concepts in game the-
ory adopts the perspective of an external observer of a
game. We are told something concerning the game,
e.g., its utility functions, information sets, etc., and
from that wish to predict what joint strategy will be
followed by real-world players of the game. Say that in
addition to such information, we are told the expected
utilities of the players. What is our best estimate of the
distribution q that generated those expected utility val-
ues? By the maxent principle, it is the distribution with
maximal entropy, subject to those expectation values.

To formalize this, for simplicity assume a finite num-
ber of players and of possible strategies for each player.
To agree with the convention in other fields, from now
on we implicitly flip the sign of each gi so that the asso-
ciated player i wants to minimize that function rather
than maximize it. Intuitively, this flipped gi(x) is the
“cost” to player i when the joint-strategy is x, though
we will still use the term “utility”.

Then for prior knowledge that the expected utilities
of the players are given by the set of values {εi}, the
maxent estimate of the associated q is given by the min-
imizer of the Lagrangian

L(q) ≡
∑

i

βi[Eq(gi)− εi]− S(q) (1)

=
∑

i

βi

[

∫

dx
∏

j

qj(xj)gi(x)− εi

]

− S(q) (2)

where the subscript on the expectation value indicates
that it evaluated under distribution q, and the {βi} are
“inverse temperatures” βi = 1/Ti implicitly set by the
constraints on the expected utilities.

Solving, we find that the mixed strategies minimizing
the Lagrangian are related to each other via

qi(xi) ∝ e
−Eq(i)

[G|xi] (3)

where the overall proportionality constant for each i
is set by normalization, and G(x) ≡

∑

i βigi(x).
2 In

Eq. (3) the probability of player i choosing pure strategy
xi depends on the effect of that choice on the utilities of
the other players. This reflects the fact that our prior
knowledge concerns all the players equally.

If we wish to focus only on the behavior of player i,
it is appropriate to modify our prior knowledge. To see
how to do this, first consider the case of maximal prior
knowledge, in which we know the actual joint-strategy
of the players, and therefore all of their expected costs.
For this case, trivially, the maxent principle says we
should “estimate” q as that joint-strategy (it being the
q with maximal entropy that is consistent with our prior

2The subscript q(i) on the expectation value indicates
that it is evaluated according the distribution

∏

j 6=i qj . The
expectation is conditioned on player i making move xi.



knowledge). The same conclusion holds if our prior
knowledge also includes the expected cost of player i.

Modify this maximal set of prior knowledge by re-
moving from it specification of player i’s strategy. So
our prior knowledge is the mixed strategies of all players
other than i, together with player i’s expected cost. We
can incorporate prior knowledge of the other players’
mixed strategies directly, without introducing Lagrange
parameters. The resultant maxent Lagrangian is

Li(qi) ≡ βi[εi − E(gi)]− Si(qi)

= βi[εi −

∫

dx
∏

j

qj(xj)gi(x)]− Si(qi)

solved by a set of coupled Boltzmann distributions:

qi(xi) ∝ e
−βiEq(i)

[gi|xi]. (4)

Following Nash, we can use Brouwer’s fixed point the-
orem to establish that for any non-negative values {β},
there must exist at least one product distribution given
by the product of these Boltzmann distributions (one
term in the product for each i).

The first term in Li is minimized by a perfectly ratio-
nal player. The second term is minimized by a perfectly
irrational player, i.e., by a perfectly uniform mixed
strategy qi. So βi in the maxent Lagrangian explicitly
specifies the balance between the rational and irrational
behavior of the player. In particular, for β → ∞, by
minimizing the Lagrangians we recover the Nash equi-
libria of the game. More formally, in that limit the set
of q that simultaneously minimize the Lagrangians is
the same as the set of delta functions about the Nash
equilibria of the game. The same is true for Eq. (3).

Eq. (3) is just a special case of Eq. (4), where all
player’s share the same private utility, G. (Such games
are known as team games.) This relationship reflects
the fact that for this case, the difference between the
maxent Lagrangian and the one in Eq. (2) is indepen-
dent of qi. Due to this relationship, our guarantee of the
existence of a solution to the set of maxent Lagrangians
implies the existence of a solution of the form Eq. (3).
Typically players will be closer to minimizing their ex-
pected cost than maximizing it. For prior knowledge
consistent with such a case, the βi are all non-negative.

For each player i define

fi(x, qi(xi)) ≡ βigi(x) + ln[qi(xi)].

Then the maxent Lagrangian for player i is

Li(q) =

∫

dx q(x)fi(x, qi(xi)). (6)

Now in a bounded rational game every player sets its
strategy to minimize its Lagrangian, given the strate-
gies of the other players. In light of Eq. (6), this means
that we interpret each player in a bounded rational
game as being perfectly rational for a utility that in-
corporates its computational cost. To do so we simply
need to expand the domain of “cost functions” to in-
clude probability values as well as joint moves.

Often our prior knowledge will not consist of ex-
act specification of the expected costs of the play-
ers, even if that knowledge arises from watching the
players make their moves. Such alternative kinds
of prior knowledge are addressed in (Wolpert 2004b;
2004a). Those references also demonstrate the exten-
sion of the formulation to allow multiple utility func-
tions of the players, and even variable numbers of play-
ers. Also discussed there are semi-coordinate trans-
formations, under which, intuitively, the moves of the
agents are modified to set in binding contracts.

Optimizing the Lagrangian

Given that the agents in a MAS are bounded ratio-
nal, if we have them play a constrained team game
with world utility G, their equilibrium will be the op-
timizer of G subject to those (potentially inexact) con-
straints (Wolpert 2003; 2004a; Bieniawski & Wolpert
2004). Formally, let {cj(x)} be the constraint func-
tions, i.e., we seek a joint-move x such that all of the
{cj(x)} are nowhere negative. Then the bounded ratio-
nal equilibrium will minimize the Lagrangian, Eq. (2),
where the world world utility is augmented with La-
grange multipliers, λj , for each of the

G(x)→ G(x) +
∑

j λjcj(x) (7)

Consider a fixed set of values for the Lagrange pa-
rameters. We can minimize the associated Lagrangian
using gradient descent, since the gradient can be eval-
uated in closed form. We can also evaluate the Hes-
sian in closed form. This allows us to use con-
strained Newton’s method. This is a variant of
Newton’s method in which we first modify the La-
grangian, and then enforce both independence of the
agents, and that the search stays on the simplex of
valid probabilities (Wolpert 2004a; Antoine et al. 2004;
Bieniawski & Wolpert 2004):

qi(xi)→ qi(xi)− αqi(xi)×
{

E[G|xi]− E[G]

T
+ S(qi) + ln qi(xi)

}

(8)

where α plays the role of a step size. The Lagrange
multipliers are then updated in the usual way, by taking
the partial derivatives of the augmented Lagrangian:

λj → λj + ηE[cj(x)] (9)

where η is a separate step size.
The update of Eq. (8) involves a separate conditional

expected utility for each agent. These are estimated
either exactly if a closed form expression is available
or with Monte-Carlo sampling if no simple closed form
exists. In Monte Carlo sampling the agents repeatedly
and jointly IID sample their probability distributions to
generate joint moves, and the associated utility values
are recorded. Since accurate estimates usually requires
extensive sampling, we replace the G occurring in each
agent i’s update rule with a private utility gi chosen to
ensure that the Monte Carlo estimation of E(gi|xi) has



both low bias (with respect to estimating E(G|xi) and
low variance (Duda, Hart, & Stork 2000). Intuitively,
this bias reflects the alignment between the private and
world utilities. At zero bias, reducing private utility
necessarily reduces world utility. Variance instead re-
flects how much the utility depends on the agent’s own
move rather than those of the other agents. With low
variance, the agents can perform the individual opti-
mizations accurately with minimal Monte-Carlo sam-
pling.

In this paper we concentrated on two types of private
utility in addition to the team game (TG) utility. The
first is the Aristocrat Utility (AU) utility. It is the
utility, out of all those guaranteed to have zero bias,
that has minimal variance:

gAUi
(xi, x(i)) = G(xi, x(i))−

∑

x′i

N−1
x′i

∑

x′′i
N−1
x′′i

G(x′i, x(i))

(10)
where Nxi

is the number of times that agent i makes
move xi in the most recent set of Monte Carlo samples.
In addition we consider the Wonderful Life Utility
(WLU), which is an approximation to AU that also has
zero bias:

gWLUi
(xi, x(i)) = G(xi, x(i))−G(CLi, x(i)) (11)

where the clamping value CLi fixes agent i’s move to
the one to which it assigns lowest probability action
(Wolpert 2003; 2004a).

Experiments

N-Queens Problem

The N -queens problem is not hard to solve, especially
with centralized algorithms (Sosič & Gu 1990). How-
ever it is a good illustration and testbed of the PD-
theory approach. The goal in this problem is to locate
N queens on a N×N chessboard such that there are no
attacks between any of the queens, i.e., no shared rows,
columns or diagonals. For the results presented here,
N = 8 and each agent’s move is the position of a queen
on an associated row of the chessboard. Denoting agent
i’s making move j as xi(j), the constraints are

xi(j) 6= xk(j) (12)

xi(j) 6= xi+k(j + k) 6= xi−k(j − k) (13)

xi(j) 6= xi+k(j − k) 6= xi−k(j + k) (14)

For 8 queens this results in 84 constraints.
For this study the step size α was set to 1.0, while

the data aging rate γ was set to 0.5. Data aging is
used to weight of the previous samples relative to the
most recent ones and smoothes the effect of the Monte-
Carlo sampling. The optimizations were performed at
a range of fixed temperatures and 10 Monte-Carlo sam-
ples were used for each probability and Lagrange mul-
tiplier update. We concentrated on the number of it-
erations to convergence, i.e., the number of probability
updates times the number of Monte-Carlo samples per
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Figure 1: Performance versus temperature.

update, for 50 random trials of the problem. The op-
timization was terminated when a single Monte-Carlo
sample within an iteration was found which satisfied all
of the constraints. Figure 1 shows the effect of varying
the agent utilities. The first plot shows the completion
rate, i.e., the percentage of the trials in which a solution
was found in under 10000 iterations. The second plot
shows the mean samples for those cases which did find a
solution while the third plot shows the 95% confidence
level in this mean.

The results clearly indicate the advantage of using
AU, which resulted in high completion rate over a wide
range of temperatures. In addition the mean samples to
completion was low over a wide range, with a minimum
of 2500. WLU also performed quite well, although the
high completion rate was only over a limited tempera-
ture range and was accompanied by an increase in the
iterations to convergence.

Figure 2 provides a more detailed look at the dis-
tribution of iterations to convergence. The curves plot
the cumulative probability for the various utilities at the
temperature giving the highest completion rate for that
utility. Again the benefit of AU is clear in ensuring that
all of the cases reach convergence. Note that for AU,
and somewhat for WLU, the tail of the distribution is
short, whereas for TG it is elongated. Generally chang-
ing the temperature increased the completion rate and
the mean iterations to completion but gave tighter dis-
tributions. A sudden drop in completion rate at high
temperature is due to the mean completion rate ap-
proaching the maximum allowed number of iterations.

K-sat

In the K-sat problem there are N binary variables
xi ∈ {0, 1} and C clauses. The i’th such clause in-
volves K variables labelled by vi,j (for j ∈ {1, · · · ,K}),
and K binary values associated with each i and la-
belled by σi,j . The ith clause is satisfied iff ci(x) ≡
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Figure 2: Cumulative probability at best temperature.

∨K
j=1[xvi,j

= σi,j ] is true. Accordingly we write

G(x, λ) ≡
∑

i λi
∨K
j=1[xvi,j

= σi,j ] = λ>c(x) where λ
and c are vectors of length C whose i components are
λi, and ci(x) respectively.

Unlike the queens example, here we illustrate PD the-
ory using exact evaluation of the required expectations
rather than Monte Carlo sampling. Noting that the
ith clause is violated only when all xvi,j

= σi,j (with
σ ≡ notσ), the Lagrangian over product distributions
can be written as

L(q) =

C
∑

i=1

{

λi

K
∏

j=1

qvi,j
(σi,j)−TS(qi)

}

= λ>c(q)−TS(q).

(15)
where c(q) is the C-vector of expected constraint viola-

tions whose ith component is ci(q) ≡
∏K
j=1 qvi,j

(σi,j),

and where S(q) ≡
∑

i S(qi) is the usual entropy func-
tion. We assign a player to each binary variable, so
the only communication required to evaluate G and its
appropriate derivatives is between agents appearing in
the same clause. Typically then, the communication
network is sparse. For the N = 100, K = 3, C = 430
variable problem we address here each agent interacts
with only 6 other agents on average.

For any fixed setting of the Lagrange multipliers, the
Lagrangian is minimized according to the constrained
Newton update given in Eq. (8). When the constrained
Newton step would move out of the feasible region (i.e.
having qi(σ) < 0 or qi(σ) > 1) we move to that point
in the feasible region nearest to the proposed update.
The minimization is terminated at a local minimum q∗

of the Lagrangian which is recognized when the New-
ton step becomes sufficiently small. If all constraints
are satisfied at q∗ we terminate and return the so-
lution x∗ = argmaxxq(x). If not all constraints are
satisfied the Lagrange multipliers are updated in the
standard manner according to the constraint violation,
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Figure 3: Evolution of Lagrangian value (solid line), ex-
pected constraint violation (dotted line), and constraint
violations of most likely configuration (dashed line).

i.e. λi → λi + ηci(q
∗) where η is some step size. In

the present context, this standard updating rule for
constrained minimization offers a number of appeal-
ing benefits. Firstly, those constraints which are vi-
olated most strongly have their penalty increased the
most, and consequently, the agents involved in those
constraints are most likely to alter their state. Sec-
ondly, the Lagrange multipliers contain a history of
the constraint violations (since we keep adding to λ)
so that when the agents coordinate on their next move
they are unlikely to return a previously violated state
since those configurations will also have higher than
average Lagrange multiplier values. This mimics the
approach used in taboo search where revisiting of con-
figurations is explicitly prevented, and aids in an effi-
cient exploration of the search space. Lastly, we note
that rescaling the Lagrangian by the norm of λ gives

L(q) = λ̂>c(q) − TS(q)/‖λ‖ where λ̂ = λ/‖λ‖ so that
the updating the Lagrange multipliers can be seen as
defining a cooling schedule where T → T/‖λ‖. The pa-
rameter η thus governs the overall rate of cooling. We
used η = 0.5 in our experiments.

We present results for a 100 variable K = 3 prob-
lem. The problem is a satisfiable formula called
uf100-01.cnf available from SATLIB at www.satlib.
org. It was generated with the ratio of clauses to
variables being near the phase transition, and is con-
sequently a difficult problem. Figure 3 shows the
variation of the Lagrangian, the expected number of
constraint violations 1>c(q), and the number of con-
straints violated in the most probable state xmp ≡
argmaxx′q(x

′) as a function of the number of iterations.
The starting state is the maximum entropy configura-
tion having all qi = [1/2 1/2], and the starting temper-
ature is T = 0.0015. The iterations at which the La-
grange multipliers are updated are indicated by vertical
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dashed lines, and are clearly visible as discontinuities in
the Lagrangian values.

The temperature is immediately dropped to 0 when
xmp satisfies all constraints. Figure 4 shows the evo-
lution of the Lagrange multipliers. Initially, λ is set
to 1 and as time progresses the history of the multipli-
ers is clearly evident. We also present a figure showing
the evolution of the probability density of constraint
violations. This exact approach where we evaluate
the expected value of λ>c exactly obscures the prob-
abilistic nature of the search. To show the stochas-
tic underpinnings of the algorithm we plot in Figure
5 the probability density of G = 1>c (i.e. the num-
ber of constraint violations) obtained as Prob(G) =
∑

x q(x)δ
(

G−G(x, 1)
)

. In determining the density 104

samples we drawn from q(x) with Gaussians centered at
each value of G(x,1) and with the width of all Gaus-
sians determined by cross validation of the log likeli-
hood. The fact that there is non-zero probability of
obtaining non-integral numbers of constraint violations
is an artifact of the finite width of the Gaussians.

Conclusion

A distributed constrained optimization framework
based upon product distribution theory has been pre-
sented. Motivation for the framework was drawn from
the extension of full-rationality game theory to the case
of bounded rational agents. An algorithm was devel-
oped and demonstrated on two distributed constraint
satisfaction problems, the N -queen’s problem and K-
Sat. The results show a promising approach for highly
distributed constrained optimization.
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